Mmé&rmfmﬁxwhﬁpa%ﬂmﬁ R

L Rmbe:msmﬁmyouﬁepmgrmgf 4
: _m’Ah!ﬁS ﬁﬂ%??@ﬁhefpmmmﬂwm__ .|

Letters

I am writing to you as I am having some prob-
lems with AMOS.

1) When 1 load a sprite from the Sprite Editor or
the Sprite Grabber into AMOS Basic, it doesn't
have the right colours. The Get Sprite Palette
command changes the background and some-
times the sprite colours, but the sprite is not
displayed inthe correct colours. But when I load
.a sprite that is already on the disk, like the
monkey, U has theright colours. When Il load one
of my own sprites back into the Sprite Editor it is
displayed in the correct colours in the Sprite
Editor only.

2)Is it possible to load two IFF pictures and then
display one afier the other withowt loading in
between?

3) This bears some relationship to problem 2. I
am having some problems with hardware scroll-
ing (software scrolling is too slow or too jerky).
I would like to be able to develop a detailed
scrolling background that doesn't just repeat
itself, a bit like the one found in Xenon II. This
background changes as you go along. I would
like to be able to line up five or six IFF pictures
vertically or horizontally and scroll over them.
Could this be done without deadlines?
Philip Deakin, Notts

1) The problem you are having with displaying
sprites in their proper colours probably stems
from confusion between sprites and bobs (See
this issue's article).

You must remember that sprites use a differ-
ent palette. To display them in their correct
colours you will probably find it easier to use the
BOB commands instead of sprite commands
(also make sure you are not doing any FADE or
GET PALETTE commands after the GET
SPRITE PALETTE).

2) To load a couple of IFF pictures and then
display them, use the AUTOVIEW OFF com-
mand to switch off autoview (thus screens are
only displayed afterevery VIEW command rather

2

SIS

than under interrupt). Then load your screens
into separate screen numbers. You don’t have to
setup the screens as LOAD IFF does this for you.
Once the screens are loaded, simply use:

SCREEN TO FRONT n : VIEW
where n is the number of the screen you want to
view. If the screens are different sizes, and some
of the underlying screens show through, use the
SCREEN DISPLAY command to make it so that
none is displayed. e.g:

SCREEN DISPLAY n,,0,,1.
This means that the one line of the screen will be
displayed, and that will be off the top of the
actual screen area. To view it use:

SCREEN DISPLAY n,,48,screen height
then the:

SCREEN TO FRONT n : VIEW

commands. The 48 is the hardw are screen co-or-
dinate of the top of the screen. You can move it
up or down by changing this number.
3) Scrolling is always a problem! The following
program shows you how to scroll a screen using
software, and proves that it can be done both
smoothly and with reasonable speed. I will be
covering hardware scrolling next issue. You
could modify the following program so that it
scrolls multiple screens. The trick lies in modi-
fying line 23 or adding to it, so that it adds lines
from another screen, rather than copying the left
of the current screen. There will be a full article
on scrolling next issue (I'm going to need some
time to go over the various ways of scrolling an
AMOS screen!) As with all the listings in this
issue, don’t type in the line numbers, they are for
reference only. This program uses the AMOS
Data disc, so have it ready in the drive.

1 Hide On : Curs Off

2 Dir$="AMOS_DATA:MAGIC_FOREST"
3 Auto View Off

4 Load “BAZK1.ABK",5

5 Load “MFSPRITES.ABK"

6 Unpack 5 To 0

7 Screen Open 1,338,200,16,Lowres

8 Curs Off

10 Get Paletie 0

11 Screen To Front 0

12 Screen Display 1,,0,,1

13 Screen 0

14 Double Buffer

15 SC=2 : Rem scroll speed (Max 16)
16 X=60 : Y=196 : Rem bob location

17 Set Bob 1,-1,, : Rem swliches off
background drawing for bob 1

18 Rem ALL bobs to be displayed in this
routine MUST have their background®
19 Rem drawing turned off |

20 Update Off : Rem switches off bob
interupts

21 While Mouse Key=0

22 Rem scroll screen 1 at scroll speed
mo

23 Screen Copy 1,0,0,SC,200 To 1,320,0
24 Rem fo scroll muliiple screens to-
gether, just change the above line 1o add
hi

25 Rem next chunk of screen 1o the
right of screen 1’

26 Screen Copy 1,5C,0,336,200 To 1,0,0
27 Rem display it on screen 0 '

28 Screen Copy 1 To Logic

29 Rem do your bobs here I'

30 Bob 1,X,Y,7+T

31 Update : Rem this displays the
bob(s) and does the screen swap for
you

32 View : Rem displays the screen
33 inc T : T=T mod 3 : Rem Increment
bob movement (loop It from 0-2)

34 Rem joystick movements (left/right,
up=jump) *

35 If Jieft(1) and X>0 Then X=X-2

36 If Jright(1) and X<180 Then X=X:2
37 If Jup(1) and Y=198 Then JMP=-18
38 Rem jump routine *

39 If JMP or Y<196

40 Y=Y +JMP

41 Inc JMP

42 If Y>=196

43 JMP=0

44 End If

45 End i

46 Wend

L] L]IL]L]

Mandelbrot Generator

The following is a Mandelbrot Generator sent in
by John Findlay of Braunsion, Northants. It
takes about 45 minutes to complete a full page,
but change SCRY# to 56.0 and SCRX# t 0 60.0
to try out different magnifications on a mini brot
(2-3 minutes).

This is a full mandelbrot, meaning the whole
of the image is generated. More interesting
effects can be seen by magnifying and/or shifting
the image. To do this change the values of
XMIN, XMAX,YMIN and YMAX. Try:

XMIN#=-2.01
XMAX#=-0.55
YMIN#=-0.52
YMAX=0.55

Thirty two colours can be used; add the colours
to the screen and change K to 31. When typing
in this listing, the line numbers are just for
reference, don't enter them.
1 Screen Open 1,320,256,16,Lowres :
Curs Off : Flash Off : Hide : ink 0 : Bar
0,0 To 320,256
2 Palette $0,$890,$AA0,59B0,38C0,
$7D0,$6E0,$5F0,3F0,$E0,$D0,$C0,$B0,
$A0,$90,%0
3 SCRY#=256.0 : SCRX#=320.0 : K=15 :
AMIN#=-2.01 : YMIN#=-1.2 : XMAX#=0.55
: YMAX#=1.2 : HE=(XMAXE-XMINEY
SCRX# : Vit= (YMAX#-YMIN#VSCRY#
4 For Q#=0.0 To SCRY# : For P#=0.0 To
SCRX# : M#=XMIN#+P#HS :
N#=YMIN#+QFVE : 1=0 : X#=0 : Yi=0
5 LABEL:
6 W#=X#"X# : ZB=Y#'Y# : RI=WEs Z# :
YR=2°X#'Y e N§ : X8=WE-Z8:+M# : I=l+1
7 If Rii<d and I<K : Goto LABEL : End If :
XU=P# : YU=Q# : Ink 3 : Plot XU+1,YU ;
ink I : Plot XU,YU
8 If Mouse Key=2 : Edit : End if
9 Next P# : Next Q# : Repeat : Untll
Mouse Key=1

How | wrote

IIt has given me great pleasure to have been
involved in the development of AMOS over the
last 12 months. In that time I have seen the
amazing possibilities promised by AMOS be-
come reality. In fact, it has surpassed all expec-
tations, to become the most significant advance-
ment in the production of home computer enter-
tainment software in years, At last, true commer-
cial quality games can be written in a high-level
structured language, rather than 68000 assembly
code.

Due 1o the pure speed and power of AMOS,
no longer is a complicated, technical knowledge
of the internal workings of the Amiga needed;
the design, quality and playability of the game
itself become the primary consideration in de-
velopment. This can only result in the appear-
ance of many top-quality, playable games, pro-
duced by people who do not have the time or in-
clination to master 68000 assembly language,
but have many fantastic ideas.

So, how exactly do you go about writing a
commercial quality game?

First of all, you need an idea. This may be a
completely original concept, or merely an en-
hancement of a tried and tested game style, as
was the case with Cartoon Capers. 1 took the
classic beat-"em-upstyle and introduced cartoon
humour.

The usual oriental martial arts experts were
replaced with a cartoony dog and cat, and the
chops and kicks given humorous touches. Then,
classic cartoon traps and weapons were added
and the whole concept began to take shape. 1
imagine that since you‘ve bought AMOS, you

4

will have plenty of ideas for the type of game you
would like to develop.

So let's move on to the next stage: Planning
or design.

The design stage is the most important part in
the development of any piece of software, as it
very hard to progress without some idea of ex-
actly what you want to do.

Note that not every last detail need be consid-
ered here, as many new ideas will probably come
to you as you progress with the game. However
it helps to have a good, solid foundation to start
from. Items such as the size and number of
sprites/bobs, layout of the screen(s), general
rules for the game, memory considerations and
50 on, need to be thought out and planned on
paper.

Test graphics can also be designed on the
computer. The graphics at this stage do not have
to be of commercial quality, just the right size
and basic shape; you can touch them up and add
extra details later on in the development.

One good way 1 have found of producing
characters or sprites/bobs, such as the main dog
and cat in Cartoon Capers, is to draw each sprite/
bob the full size of the screen and then use a
graphic package to reduce them to the required
size. The rough reduced pictures can then be
used as working graphics, and touched up at a
later stage.
Background
screens, too, @
need only be
rough outlines
at this stage.

So now you've got an idea, a good basic
design, and some working graphics. It's time to
start (o make things actually move on the screen,
The beauty of AMOS, and in particular its ani-
mation sub-language, AMAL, is that you can
actually get a reasonable idea of how the game
will look with only a few lines of Basic. About 10
lines of AMOS Basic, and a few AMAL strings,
is all that's needed to display a background and
have a couple of bobs animating and moving
around the screen. After you've experimented a
litle, and impressed yourself with the power of
AMOS, the basic shell for a game may be writ-
ten.

All games have basically three parts: A title
page/demo, a main game loop, and an ending
sequence/high-score table.

The title page and end-
ing sequence can be any-
thing you like. Try using
some of the built-in fea-
tures of AMOS to create
spectacular demos. In fact,
this is a good way to leamn
the capabilities of AMOS before actually em-
barking on the main game loop.

The main game loop usually consists of the
following procedures (procedures, of course, are
one of the major features of AMOS):

Initialise variables, bobs, sprites, screens, eic.
REPEAT Accept new move for each player
IF old AMAL string finished

Get new AMAL string corresponding to new
move

ENDIF

Check collision detection

Check gameover conditions

Update scores, timer, etc

Update bobs/sprites, etc

UNTIL gameover flag set

End game sequence

7/

The initialise section should do things such as
load screens, sprite banks, samples and so on, if
needed; initialise scores, timers and the like; and
set the initial positions for sprites/bobs and
screens.

After that, the main REPEAT.,.UNTIL loop
executes until a gameover flag is set following
some condition such as time running out or a life
being lost.

During this loop & number of things occur:
First, a player's move is accepted either from a
joystick, the keyboard, or an intelligence routine
in the case of computer-controlled players. Then
the corresponding AMAL string for that move
should be fetched from memory and stored in the
current move string for that plaver; ie. each

7

possible move that a player may make should
have a corresponding AMAL string stored some-
where in memory.

An AMAL register should be used to indi-
cate when a move is started and when it is
finished. When a move is finished, further inputs
may be accepted and new moves made.

Next, any collision checking should be done.
If a collision occurs which will change the cur-
rent move a player is making, for example, an
explosion, the current move string should be
replaced with the new collision string without
checking whether the current move has finished
ornot. Thatis, the player‘s move isoverridden by
the new collision move.

Then the conditions for a gameover situation
should be checked, and if they occur the gameo-
ver flag should be set. Next the score board, timer
and so on, should be updated, if necessary.
Finally, the player’s current move is performed
by moving it into AMAL, using something like:

IF currentmove$ <> “” THEN Amal
channel#, currentmove$
currentmove$ = “”

Any other effects, such as the traps and other
characters in Cartoon Capers, can be called and
moved prior to the collision detection checking
procedure. They can also be updated in the same
way as the players.

That summarises the basic shell for a game
and the major areas which need to be programmed.
Extras, such as special effects, and sampled
sound effects can be added at any relevant point
in the program. Another great feature of AMOS
is that new ideas can be added and tested very
easily and quickly, something not possible in
68000 assembly language.

I hope that you can make some sense of this
and that it is of help in the development of your
own games, and look forward to playing some
great AMOS games very shortly. In the mean-
time, go out and buy Cartoon Capers to see what
exactly AMOS is capable of, and see if you can
do better!

Cartoon Capers will be released in October. B
6

Public Domain

Library @

Listed on this page are the first discs to enter
the AMOS Public Domain library. We in-
tend to fill the library with useful utilities,
graphics, sound resources — in fact anything
to do with AMOS. With AMOS 3D on the
horizon we plan to supply additional 3D
object data discs through the library.

We also need your support. Over 90% of
the PD discs in the STOS Club are supplied
by members. By sharing your creations with
other AMOS users everyone will benefit and
it will help to spread the word about AMOS.

How it works

Each disc costs just £2.50 each — or £1.50 if
you supply your own disc. If you order three
discs or more, deduct 20p per disc (including
the first three). For example, four discs will
cost £2.30 each (£9.20 in total). Please add
25p postage per disc if you live in Europe —
or 50p per disc if you live elsewhere in the
world, otherwise your discs will be sent by
surface mail!

Each disc has a specially-printed AMOS
Public Domain sticker kindly produced by
Mandarin Software so your PD discs will
match the rest of your AMOS master discs.

Ring Sandra on (0942 495261 to find out
about the latest public domain titles to be
added to the library.

If you have any programs which may be
suitable please send them along (preferably
as unprotected Basic files).

Send cheques, postal orders or stamps to:

Sandra Sharkey,
25 Park Road,
Wigan,
WNG 7AA.

Public Domain Library @_

APD1: GMC (Games Music Creator). A power-
ful and easy-to-use utility that allows you to
create musical unes, Uses all four channels and
comes with DOC files on disc. Use the GMC-
t0-AMOS converter (on the AMOS program
disc) to convert the GMC music data files into the
AMOS music format, then play it back using the
MUSIC command.

APD2: Treasure Search. Hunt for treasure in
this clever educational co-ordinates game by Pe-
ter Hickman, the author of Number Leap. It
includes excellent graphics and sampled speech.
This disc contains RAMOS, the Run-only ver-
sion of AMOS (as found on the EXTRAS disc).
APD3: Forts Disc 1. This contains 14 typefaces
including Times, Bookman,Helvetica and Tiny.
APD4: Fonts Disc 2. 13 including Avant Garde,
Celtic, Palo Alto, Bassel, Peignot and Aldous.

APDS: Fonts Disc 3. 14 including Broadway,
Camelot, Future, Stencil and Vancouver.
APD6: ST-Amiga Disc. Allows you to read ST
discs on the Amiga, so you can transfer your pro-
grams from STOS-AMOS (in ASC format). Also
includes the STOS-AMOS sprite converter and
sample bank converter. Note: Because of the
way this program works, it effectively needs two
disc drives.

APDT: Virus X 4.0. The Amiga’s most widely
used virus killer. We'll supply the newest ver-

sion as it becomes available.

APDS8: Music Tunes. A collection of tunes by
Alastair Brimble, specially commissioned by
Mandarin for AMOS.

APD9: AMOS Big Demo. The demo written by
Peter Hickman to show off AMOS. Although
written originally on an early version of AMOS,
it is still quite impressive!

APD10-13: Amiga Samples 14. Peter Hick-
man's useful collection of IFF samples for use in
GMC, Soundtracker, Sonix or AMOS itself.
APDI14: IFF Pictures 1. A disc packed full of
clip art for you to grab things from, includes
CASTLE, PORSCHE, SPARK, WINNERS,
KINGTUT and many more.

APD1S: IFF Pictures 2. Includes Faces, Gorilla,
Odie, Ninja, Mazda, Venus, MTV and others.
APDI16: IFF Pictures 3. Compact disc, Walk-
ers, Trex, Kodak, Captain Kremlin, Micky......
APD17: 92 samples ready for use in GMC.
APDI18: 76 more samples for GMC composi-
tions.

APC19: Microman's Music Sensitive Balis
Demo. Pretty graphics and a real nice environ-
ment allow you to play back the mnes from the

AMOS package. Due to its size AS00 half meg
users will only be able to play small musics.

MEGA MUSIC £150 PRIZE COMPETITION

We're looking for the best Soundtracker, GMC
or Sonix Music demos written in AMOS.

You can add graphics and animation to
enhance the atmosphere created by your music -
be creative, use sprites and bobs and the VU
meter commands to bring that compesition to
life.

All entrants will be made Public Domain and
available through the club. You have untl
September 30th to send in your entry.
Suggestions:

* Have a compilation of musics on a juke box,

with the ability to choose a particular piece of

music to play.
¢ Animate in time to the beatL
* Add user control to your demo - joystick,

mouse or keyboard.
* Make it fast and furious fun to watch.

Post your entries to Richard Vanner at
Mandarin Software. The best entry will receive
a cheque for £150 courtesy of Mandarin.

Please send in your creations for the PD
Library. Weneed games, demos, music, graphics,
utilities in fact anything! n

7

by Aaron Fothergill

If you are working with AMOS on an unex-
panded A500, you will no doubt be very happy to
hear that]1 will be doing a series of articles on how
to get as much as possible out of limited memory.
Those of you working with one meg should also
read these articles — if you are going to release
something commercially, it should fit into a half-
meg machine!

General Tips

» Make sure that AMOS is trying to close the
Workbench when booting. This saves about 40k
or more and is set on the EDITOR OPTIONS
menu selection in the CONFIG.AMOS program
on your master disk.

« If you can bear not using it, switch off or
disconnect your second drive before switching
on the Amiga and booting AMOS. This can save
20k or more.

Pruning the Sprite Editor

You might want to fit more or larger sprites into
the Sprite Editor. This can be done by pruning off
bits youdon't need. If you never use the Niceness
routines (screen and button appearance and Air-
brush speed), you can remove these and save
about 7k. If you are only working in one resolu-
tion you can remove the resolution selector gain
another 1k. Now 8k might not seem like a lot, but
on average you can get another 30 or so sprites in
memory! When modifying the Sprite Editor, or
any of the programs on your master disks, work
on backups only! NEVER your master disks!

Removing the NICENESS routines

* Use the FIND TOP menu to search for Gosub
NICENESS. The statements around it should
look like; If C=11 Gosub NICENESS End If.
Delete these three lines from your program.

« Then search for the subroutine which is called
NICENESS: (note there is NO space between

8

A500 Blues

the S and thecolon). Mark this line (1182) with
the BLOCK START option in the BLOCK menu
= Search for SELREZ: and mark the previous
line (it should be 1288) with the BLOCK END
option from the BLOCK menu.
* Do a CUT BLOCK from the block menu, thus
removing the Niceness routines.
« This will leave a few procedures that are now
redundant, so using FIND and CUT BLOCK
remove the following: SMALLBUTTON,
TWINBUTTON, QUADBUTTON.
» If you have a suitable art package, you can get
more memory back by the following:

a) Go o direct mode and save the menu
buttons picture with the following lines:

Default Unpack 6 to 0
Save IFF “MENU_BUTTONS.IFF",0
then after saving your modified version of the
Sprite Editor on a spare disk, load up your art
package, load in the MENU_BUTTONS.IFF
file in 8-colour Low Resolution Mode and proce-
dure to erase the Shadow Software logo to the
bottom right of the icons, and the Blue, Light
Blue and Yellow Buttons. Then resave the pic-
ture under the same name.
b) Re-boot AMOS (after first switching off)
c) Enter the following program:

Load Iff “MENU_BUTTONS.IFF",0
Spack 0 to 6,0,0,320,144
Save “MENU_BUTTONS.ABK",6
d) Run this program, then load in your pruned
sprite editor, go to direct mode and type:
LOAD “MENU_BUTTONS.ABK",6
and your sprite editor should have an extra 8k or

so of memory over the original.

Removing the Resolution Selector

» Find the SELREZ: subroutine and its Return
statement, mark it as a block and remove it with
Cut Block.

* Find Gosub SELREZ and remove the
surrounding If....Endif (five lines). To work ina
different resolution, change line 18 which sets
the REZ variable to the default resolution. Values
from 0 1o 7 are valid and represent:

0= Low res 8 colours

1= Low res 16 colours

2= Low res 32 colours

3= Low res 64 colours (EHB)

4= Hi res 2 colours

5= Hi res 4 colours

6= Hi res 8 colours

7= Hi res 16 colours
Once finished, save your modified Sprite Editor
asSMALL_SPRITE.AMOS on a spare disk. Re-
boot AMOS or change the buffer size back o
normal and load this version.

Another way of saving memory, is to make
the Menu Buttons screen load in from disk at the
start of the program. This is slightly less
convenient, because you make sure that the disk
with the MENU_BUTTONS.ABK file is in the
current drive whenever yourun the Sprite Editor,
but it does save younearly another 7k of memory!

To do this modification:

* Go to direct mode and type:
Save “MENU_BUTTONS.ABK",6
» Now retum to the editor and find the procedure
TITLEBAR
* You will have to unfold this procedure. Once
done, check about seven lines down from the
start of the procedure and you should find:
Unpack 6 to 2
* Insert a line before this reading:
Load “MENU_BUTTONS.ABK",6
then insert a line after the Unpack line, reading:
Erase 6
This version will load in the menu buttons,
unpack them to the screen and then erase the now
unused bank.

Other options include trimming out commands
that you don’t use (difficult) or simplifying the
Menu Buttons screen down to four or even two
colours so that it uses less memory. This means
checking through the program for any of the
routines that draw to the menu screen to update
the buttons to make sure that illegal colours are
not used.

More on A500s and the sprite editor in the
next issue. =

Stop Press!

« AMOS is still selling really well around the world.
Pactronics in Australia is doing particularly well -
they've even set up their own AMOS Club.

« French and German language versions of AMOS go
on sale at the end of the year — and those people who've
already bought the English AMOS can swap their
manuals with Mandarin for a couple of pounds.

* AMOS s are arriving at Mandarin at the rate
of upto 10aday| There’s a Worm game, two Breakouts,
a duckshoot, a horizontally-scrolling plaiform game,
lots of demos — and more besides. Mandarin have
decided to keep the discs, but send a free PD disc to all
senders. Contact Sandra to get your mils on some of
these (though some may not be for public domain).

» Fun School 3 (Amiga) goes on sale at the beginning
of September. It’s available for Under 53, 5-7s and
Over7s with six programs per package and a price of
£24.99 — and it's written entirely in AMOS using the
RAMOS run-time system. Check it out - it looks
amazing! (You can get Peter Hickman's FS3 demo
from Sandra.)

» Cartoon Capers has been delayed as it won't quite fit

into an unexpanded A500. Frangois is working on a
routine 10 Save more space. 2]

Hotline

Membership has its privileges! Once you
subscribe to the AMOS Club you will be
given anumber to ring for on-line technical
help. Aaron Fothergill, author of Magic
Forest, the Sprite
Designer and the
Map Editor will be
on hand to help
you with any
AMOS-related
subject.

Tel: 0271 23544

Adding a High Score 1

Most arcade games have some form of storing
the highest scores. In fact in the early days of
arcade gaming, getting a high score and getting
your name or initials on to the table was the
highest goal.

As games developed, the added incentive of
finding out what was on the next level took away
some of the need for a high score, but they are still
nice to have.

The principles behind a high-score table are
as follows:

» Check a player's score against the high scores,
starting from the highest and working down.

« If the player's score is greater than one of those
on the table, move the beaten score and all those
below it down one place, get the player’sname or
initials and store them with his score in the
vacated slot. Remember when moving the scores
down 1o also move therelevantnames down with
them.

» Display the high scores in a table, as a scrolling
list, or as a series of bunnies jumping across the
screen with banners containing the scores (just a
few ideas there!).

The following AMOS lines add a simple high
score table to the Magic Forest game on your
AMOS Data disk. Make a backup of the Data
disk and add them to the program. The lines here
are numbered so that you know when a new line
starts, but remember to leave out the line num-
bers.

A) Find the Dim statements at the start of the

program and add the following lines after the
normal two Dim statemenis:

(1) Dim HIGH(9),HIGHNAMES$(9)
(2) Gosub INITHIGHSCORES B)

Find Line 463 and add the following lines after
10

the Erase 1 line:
(3) Screen Copy Logic To Physic

Then add the following lines after the Loop
instruction on line 488

(5) Rem Initialise high score table

(6) INITHIGHSCORES:

(7) A=0 : Repeat

(8) HIGHNAMES(A)=Left$(“Magic Forest”
+Space$(20),20)

(9) HIGH(A)=11000-(A*1000)

(10) Inc A

(11) Until A=10

(12) Return

(13) Rem High Score Table

(14) HIGHSCORE:

(15) Rem First check to see if score is higher than
the 10 stored

(16) A=0 : Repeat

(17) If SCORE>HIGH(A)

(18) Gosub HIGHADD

(19) A=99

(20) End If

(21)Inc A

(22) Until A>=10

(23) Rem Display high scores

(24) Rem To do this, we will grab the lines as
blocks from another screen

(25) Rem So we will need another screen

(26) Auto View Off

(27) Screen Open 2,320,10,16,Lowres

(28) Curs Off : Flash Off

(29) Screen To Back 2

(30) Auto View On

(31) Rem The following procedure displays the
text, and grabs it as a block

(32) HIGHLINE["High Scores”,12,61]

(33) A=0 : Repeat

(34) H$=HIGHNAMES$(A)+Space$(5)+Right$
(*000000"+Mid$(Su$(HIGH(A)),2),6)

(35) HIGHLINE[HS,15,A+62]

able to WWlagic Forest

(36) Inc A

(37) Uniil A=10

(38) Screen Close 2

(39) Put Block 61,80,10

(40) A=0 : Repeat

(41) Put Block A+62,50,30+A*15
(42) Inc A

(43) Until A=10

(44) Return

(45) HIGHADD:

(46) Screen Open 2,320,25,16,Lowres
(47) Get Palette 1

(48) Curs Off : Flash Off

(49) Set Rainbow 1,3,25,","™ "(1,2,8)"
(50) Ink 3 : Bar 0,0 To 320,25

(51) Ink 1 : Box 0,0 To 320,25

(52) Paper 2: Pen 14

(53) Locate 0,0

(54) Centre “Enter Your Name!"
(55) Rainbow 1,0,Y Hard(1),25

(56) Paper 3 : Pen 15

(57) Locate 0,1

(58) Screen To Front 2

(59) Line Input “:";NAMES$

(60) NAMES=Left$(NAMES$+Space$(20),20)
(61) B=9 : While B>A

(62) HIGH(B)=HIGH(B-1)

(63) HIGHNAMES$(B)=HIGHNAMES$(B-1)
(64) Dec B : Wend

(65) HIGH(A)=SCORE

(66) HIGHNAMES(A)=NAME$
(67) Screen Close 2

(68) Return

(69) Procedure HIGHLINE[AS$,C,B]
(70) SC=Screen

(71) Screen 2

(72) Locate 0,0 : Paper 0 : Pen C

(73) Print AS;

(74) Get Block B,0,0,Len(A$)*8,10,1
(75) Screen SC

(76) End Proc

Once you've typed that lot in, you should have
high scores with your game!

Have fun experimenting with the above rou-
tines, to modify the high-score table to what you
prefer. You might want to store and display the
level that the player got to, in which case you
would have to set up another array to store it, and
remember to move it with the names and scores.
You might also want to display the table a bit
more dynamically.

My offering is a little ordinary (pink bunnies
towing banners?). Oh yes, the golden rule of
working on the Amiga:

SAVE IT NOW!!! u

Whether you've got a problem or just
something to say, we'd like to hear from
you.

We're on the lookout for letters, ar-
ticles or suggestions to make the Newslet-
ter as exciting and informative as possible.
You can use old-fashioned pen and paper,
but we'd be delighted to receive Ascii or
Protext files together with a printout. Hope
to hear from you soon!

Aaron

11

Absolute Beginners

Number 1

Leamner programmers seem to be split into two
groups: Those who have programmed in Basic
before but not AMOS, and those who have never
programmed at all.

For this reason I am going to split this series
into two separate articles: Absolute Beginners
will help those whoreally have never programmed
before, and Almost Beginners will cover aspects
of programming a level up, for those just
converting to AMOS or who have never attempted
a major program before.

So for our Absolute Beginners, in this issue
we are going to write a very simple dice game.
This program will introduce some very basic
features of programming along with a few handy
tps.

There will be one small programming
convention here: Because AMOS can have lines
longer than we can list on one line in this
newsletter, 1 will be using line numbers for this
program instead of labels so that you know when
to enter a new line. We will convert to labels in
a later issue.

The first question you should ask yourself
before writing a program is What am I doing? A
program is a sequence of commands that the
computer will follow exactly, so you must make
sure you get them exactly right. By deciding
beforehand what you are going to do in the
program and how you are going to do it, you will
make life a lot easier.

For our dice game, the rules are simple: The
computer rolls adice to produce anumber between
1 and 6. Then the player rolls a dice for another
number between 1 and 6 and the highest roll
wins. We also want to add a few embellishments
such as the ability to enter the player’s name, and
to play again.

Before writing the program, it can be benificial

12

to work it out in pseudo-code. This is where you
write down a summary of what the program will
have to do, without having to remember all the
commands.

Our program will need routines to:
1. Enter player's name

2. Roll the computer dice and display it

3. Roll the player dice and display it (with
player’s name)

. Check for winner

. Ask player if he wants another go
. If so then go back to 2

. Otherwise stop

And that’s the game in a nut-shell. As you can
see, pseudo-code makes the program look less
complicated. Believe it or not, it really is that
simplel

The first task on our list is to enter the player’s
name. We will have to store it somewhere as we
will need it later to display with his dice roll. So
a VARIABLE must be used (see issue 0 for an
explanation of what a VARIABLE is). As the
name is made up of a string of letters, a STRING
variable has 1o be used (with a § after the variable
name). We shall call it NMES.

The command required to get an input value
from the user’s keyboard and store it in a variable
is INPUT. The type of value depends on the
variables being used for input - for instance you
can't input strings into a numeric variable. You
can also add a prompt to an INPUT command so
that you can tell the user what information is
required. So our first line will be:

~ o L B

10 Input “Enter your name and press
RETURN “;NMES

This will display the message: Enter your name
and press RETURN with a flashing cursor. The
user can then enter his/her name and on pressing
Return whatever they typed will be stored in the
variable NMES.

Next we need to generate some random
numbers for the dice throws. As we are only
dealing with the numbers 1 to 6, we can use
normal INTEGER variables in which to store
them.

The function =RND{n) returns a value from
0 to i, so to get a number from 1 to 6, we simply
use variable=RND(5) and add 1 to it. We don't
use RND(6) because we don’t want the number
0 generated for any throw of the dice.

We will call the variable for the computer's
throw D/ and the player's throw D2, so the next
two lines will be:

20 D1=Rnd(5)+1
30 D2=Rnd(5)+1

To display the scores, we simply use the PRINT
statement, which can output text, numbers or a
mixture of both. First we display the computer's
score:

40 Print “The computer rolls a";D1
Then we need 1o output the player’s score:
50 Print NMES;" Rolls a™;D2

Notice that on the player’s display, we used the
variable NMES as the first part of the print which
already holds his/her name. This means that the
name will be output as part of the message.

The only tricky part of the program is working
out who wins. To do this, we need to use an
IF..THEN statement to work out the argument
given to it. If the result is TRUE, it will execute
the series of commands after the THEN on the
same line. If the result of the conditionis FALSE
it will go on to the next line (or whatever is after
the optional ELSE statement).

First we will check to see if the computer the
highest score. This is TRUE when D1 is greater
than D2. This can be checked by the line:

L)))L

60 If D1>D2 then print “The computer
wins!™

Then we check to see if the player has the highest
score:

70 If D1<D2 then print “The player wins!”
Finally we check for a draw:

80 If D1=D2 then print “It Is a drawl”™

The meanings of the mathematical symbols
used in lines 60, 70 and 80 are:

is greater than

is less than

is equal to

and you can have combinations such as >=
greater than or equal to.

All we need to do now is see if the player
wants another go. We can use another INPUT
statement here and then check to see if the
variable used contains YES:

90 Input “To play again type YES and
press RETURN “;¥$
100 i Y$="YES" then goto 20

AV

Notice on line 100 how I've used the IF.. THEN
statement with a string variable and also a GOTO
command, which makes the program GOTO the
line specified — in this case 20 — providing the
result of the test is TRUE.

If you've been typing in the program while
reading this, just type RUN, press Return and
play the game. You've written your first 10-
liner!

LLIST manual bug

The LLIST command, as mentioned in the
manual, doesn't exist! To print out your program,
or a section of it, mark the area you want to print
as a block, then use Print Block from the block
menu.]

13

Frangois’ letter from France

Richard ¥ammer asked me to write a small intro
for the first club's newsletter, and I do it with a
great pleasure! It is the opportunity for me to tell
you what’s in my mind (not much!) at this very
moment. As always, I'll ask you to forgive my
frenchy English!

THANK YOU! AMOS has been doing really
great! You have been wonderful, merveilleux,
geniaux.. oops! AMOS has been a success im-
mediately after its release. In fact, we did not wait
for such a success: The product was late (thanks
to me!), it was in the middle of the Mundiale, and
usually, customers don't trust the first version of
such a product.

AMOS has reached the second place of Gal-
lup charts, topped only by Kick Off II (a great
program!). Now AMOS is still in the top five,
and it seems he wants to stay there. The most im-
pressive thing is that you did not wait for the
reviews in magazines to buy it. I hope you have
not been deceived!

Mandarin have received a lot of letters and
registration cards. I can assure you, knowing the
customer support team at Mandarin, that every
letter is carefully read. They do a sorting, and
send me the main ones, and I personally answer
to these.

It is a real effort, but it will help us to make
AMOS better and better. I am currently working
onversion 1.2, and this version will include a few
new instructions suggested by users. I want to
make AMOS as close as possible to your desires
(well, the majority!) Bugs bugs. Yes, unfortu-
nately, we have missed a few bugs in AMOS
V1.1. During development, AMOS has been
tested by 10 persons during several months, but
it is nothing compared to 10,000 persons during
two months.

Sorry about that, but you must imagine that
testing over 1 meg of source code is not an easy
(multi) task. The worst thing in big programs is
that when you change something in one comner,
it can create problem at a very far subroutine that
you have almost forgotten!

14

Let me tell you what happened when 1 re-
ceived AMOS master. I was really happy, it was
the final point of 16 months hard work. So proud
was [whenl inserted AMOS language disk inmy
A500, booted AMOS up, and ... guess what ...
pressed HELP! The firstkey I pressed on my first
try of the master was HELP. Bing bang crash!
Hello Mr GURU, nice to see you there. It almost
killed me!

It was just to tell you that I am aware about
bugs, and I do all my best to correct them. On the
bug front too, you have been really great. Lots of
you have been saying that AMOS was not too
bugged compared to other similar products.
Thanks!

It may not be too bugged, but it is, so I am
currently finishing Version 1.2, where all re-
ported bugs are removed, like:

« HELP

+ Global variables in procedure calls

» Accessory crashes

= Disk access problems

« POP PROC with a RETURN in the pile
« and a lot of minor (but annoying) bugs.

Like with STOS, we will release new versions of
AMOS by way of a .AMOS program. AMOS
interpretor will be, of course, coded in a memory
bank, so that people can't extract it without
running it from AMOS. Presented like this, it
will be public domain, in PD houses and on
magazine’s cover disk, at NO COST 1w you!
In the near future, I will program a few exten-
sions:

= A DEVICE extension, to add commands like
OPEN DEYVICE, to have better control over
RS232, MIDI and parallel port. Up to now, the
Amiga Dos control is really not enough.

* An IFF animation reader, to easily grab anima-
tion produced by other programs, and

continued on back page

The Art of Pseudophysics in Computer
Games — by Prof A Speck 0.D.D.

So you want to write a simulation game eh? Tons
of vector maths and physics later you have your
game. Unfortunately the gameplay is so terrible
you have to offer it with a free T-shirt in order to
sell it.

So what went wrong? Simple! Maths and
Physics relate to real life. So how many com-
puter space games involve you sitting in a tin can
with a vacuum all around you and hordes of
slimy things (real ones) attacking you? Answer:
None, because the computer can’t display things
too realistically when its only outputs are sound
and a TV screen.

What's really needed is a variation to normal
maths and physics, to take into account that your
computer world is ever so slightly strange.....

Pseudophysics

Pseudophysics is the applicationof Rule of Thumb
in physics, to match the Laws of Physics to a
computer enviroment. (For a more accurate
explanation of Rule of Thumb and conversion
tables to metric and imperial measurements, read
Random Walks in Science). This means that for
your game you must discard any laws of physics
that don’t look or feel right.

Beware however, there are rumours that the
government is bringing in fines for breaking the
Laws of Physics. For instance, having a game
where people can fly, thus breaking the law of
gravity, will carry a maximum fine of £2000.
You have been warned! (This doesn’t apply yet
to overseas readers. However, other govern-
ments are looking at this system).

The first thing you must learn about pseudo-
physics is that nothing is fixed (or rather every-
thing is!) This leads to Speck's 1st Law of
Pseudophysics or the Fiddle Factor: All con-
stants arevariable until the game looks and feels

P21

right. This means

that you should play

around with any of

the multipliers in

your equations until
the game plays the way you want it to and looks
correct,

Don't worry if your physics teacher would
scream at seeing them. (My physics teacher used
to scream at my equations anyway!)

Equations should also be tested out by trying
the game on someone else, preferably someone
familiar with the style of simulation you are
trying. Pseudophysics doesn't discard every-
thing from physics however, this would be silly.
It merely uses laws that are useful at the time
(much like record companies!).

Sometimes you might have to create a new
law to apply to a situation never used before,
such as the time taken for a spaceship to get from
A to B if it uses hyper-drive (Einstein is now
spinning in his grave at 3 revs per minute!) This
law might take into account the factor of C being
in the way, and the drag factor of a spaceship with
planet C wrapped around it.

Sometimes you have to just do a series of
extra equations to make up for something that
wouldn't otherwise look right. For instance, in
the writing of Skystrike and Skystrike Plus, the
aircraft is supposed to stall if the airspeed gets too
low. To acheive this, a variable ST was used.
Each frame this variable was subtracted from the
altitude of the aircraft.

When the aircraft was flying normally, ST
was set to (. When the airspeed got too low, ST
was set 1o 10, thus making the aircraft fall out of
the sky rapidly. As the airspeed picked up again,
the variable was lessened, until the aircraft pulled
out of the stall.

15

Varicus other routines were then able to use
the ST variable to determine if the aircraft was
stalling, and the speed at which it was dropping
(the landing checker for instance). The pseudo-
physics routines for Skystrike were developed
and tested over two weeks by a team of around
eight part-time test pilots, until they were as good
as possible.

So remember, real physics just don’t work in
the computer games world (look at FOFT for an
example). So start re-writing those equations.
You might want to use the general pseudophys-
ics symbol of 7= which stands for SORT OF
EQUALS and is very important in psesudophysi-
cal equations. For example:

V?=DIT (Velocity equals Distance over Time
multiplied by a Fiddle Factor).

or:

E?=MCA2(OrI'musing hyper space. Eat Ionex-
haust Einstein!).

By the way, this also has the use of making your
equations less usefull to anyone who wants to
steal your game idea! Have Fun Next Issue:
How to program in Spaghetti Code.

(Professor Speckisa lecturer inapplied Pseudo-
Physics at the University of Advanced
Gameswriting in Barnstaple. He has alsoworked
as an assistant test-pilot in games such as
Skystrike, Skystrike Plus and Yomo. He is cur-
rently playing an end of level guardian in YOMO
2389) 2

Magic Forest 1 Meg bug
There is a small bug in the Magic Forest
game which causes the wrong music to be
played on the 1 meg version. Line 28
should read:

BANK3=1
instead of:

BANK3=2

Mandarin Software is keen to find programmers to write the
following applications for possible publication:

« font editor

» adventure game creator

* sampled sound editor to work with
most cartridges

* word processor

» database

+ spreadsheet

= business graphics

= feature-packed art program

= fractal landscape creator

* ray iracing program

* collections of animated sprites
* original games

= variations on 'classic’ games

rate.

...in fact anything that will appeal to other AMOS users or even non-AMOS
users. Mandarin will pay an outright sum or royalties at the standard industry

Please write to Richard Vanner, Development
Manager at Mandarin Software in Macclesfield
— or ring him on 0625 859333 between 2 and 3pm.

' U lN |‘ : ﬂ|

S OF T WARI

16

Bobs, Sprites and other Lifeforms

Life can be quite confusing at times, especially
when a programming language like AMOS has
so many different commands, and so many
different ways of doing the same job. For
instance, AMOS has two ways of
manipulating graphical objects on
the screen, sprites and bobs. Both
these object types have asimilar
set of commands, and both
can be designed from the
same program. So what's the
difference? This has caused
quite a few headaches for
some AMOS programmers,
so here, in very simple terms,
is an explanationof what sprites
and bobs are.

Sprites

A sprite is an object that can be moved
rapidly about the screen (the mouse
cursor is a sprite). Each of the eight
available sprites can have an image
attached to it (the image is what you see,
as the sprites themselves are invisible),
with certain limitations. For instance,
sprites can only be in either 4 or 16 colours, and
are all 16 pixels wide (although they can be any
height).

The four parameters in the SPRITE command
supply the sprite number, the co-ordinates on the
screen to place the sprite and the image number
to attach to it. Each sprite can only be displayed
atone location on or off the screen at any point in
time. So using the following commands:

SPRITE 1,10,20,2 SPRITE 1,10,50,3
will result in only the second sprite being
displayed (as sprite number 1 stops displaying
the first image and goes to the new location with
a new image). To display two sprites on the
screen at the same time, a different sprite number
must be used such as:

SPRITE 1,10,20,2 SPRITE 2,10,50,2
The image number can be the same for all the
sprites you aredisplaying if you want, oritcan be

completely different. It is just the sprite numbers
that must be different.
One tricky point is that sprites use hardware
screen co-ordinates. So to display a sprite
at X=10,Y=20 on your screen, you
must convert the X and Y co-
ordinates to hardware co-
ordinates using the XHARD()
and YHARIX) functions.

For example:

SPRITE
1,XHARD(10), YHARD{20),2
Thisisn’t theonly awkward
point — sprites also use their
own colour palette. The
Amiga supports a palette of 32
different colours (in Extra Half
bright mode, the 32 extra colours
are copies of the first 32 displayed at

half brightness). When sprites use 16

colours they use the second setof 16 (a
16-colour screen uses the first).

So when designing a sprite,

first go to 32-colour mode in the Editor

and set up the colours you wantin colours

16-31, then go back to 16-colour mode

and draw the sprite. You can use the SEE AS

SPRITE button to check on what the sprite will

look like.

Because each sprite can only be 16 pixels
wide, you would have problems in displaying
larger objects, so AMOS can also use computed
sprites. Sprites 0-7 are normal 16-pixel width
sprites (the mouse cursor is sprite 0), whereas
sprites 8 and onwards are computed sprites.
With these, AMOS automatically sticks different
sprites together, each using a 16-pixel width
chunk of yourimage, so that it is displayed as one
image. You have to be carefull however, as there
are only eight hardware sprites. This means that
you can only use sprites to display upto 128
pixels width of objects at any one time.

Bobs
Fortunately, AMOS can use Bobs (Blitter

17

OBjects), which are software controlled objects
(using the Amiga Blitter chip). They are only
marginally slower than sprites, but they have
major advantages over them:

« They can be any size.

* You can use as many of them as you want.

« They use the same co-ordinates and colours
as the screen.

This makes bobs a lot easier to design and use.
What you see in the Sprite Editor is what you get
on the screen (assuming the screen is the same
resolution and colour set as the Bob).

Tricks with Bobs and Sprites

Q: How do I stop a bob or sprite flickering onmy
screen?

A: By doing a DOUBLE BUFFER command
before your display loop, you make the screen
display do SCREEN SW APPING automatically,
causing flicker-free animation. See the games
Magic Forest and Amosteroids for examples.

Q: Howdol designaBob or Sprite, so that it uses
the same colours asthe screenlwill be displaying
it on?

A: Load up the Sprite Grabber program from the
AMOS disk and run it. Load up the IFF
background picture you want the colours from,
and grab a sprite from anywhere on the screen.
This stores the screen's palette in the sprite bank,
which you can now save and load into the Sprite
Editor. Once you have designed a few images in
the Sprite Editor, you can safely delete the dummy
image.

Q: How do I merge two sprite banks?
A: The following program will achieve this. Type
it in and save it as SPRITE_MERGER.AMOS
(not on your AMOS Master disks).

* Sprite Bank Merger program
‘ Shadow Software 17/7/90 writlen for
* AMOS Ciub By Aaron Fothergill

M=200 : Rem m=max # of sprites In
second bank

Dim XS(M),YS(M),XHS({M),YHS(M),BP(M)
Fssn-

18

While F$=""

F$=Feei$("*.ABK",”","Pick a sprite
bank™)

if F$="" Then End

if Upper$(Right${F$,4))<>".ABK" Then
Fs 'uu

Erase 1

If F$<>"" Then Load F$,1

A$="": A=0 : Repeat :
AS=A$+Chri(Peek(Stari(1)-8+A)) : Inc A
Untll A=8

If A$<>"Sprites “ Then F$=""

Wend

F“.un

Whiile F28=""
F2$=Fsei${“*.ABK",""," Pick another
sprite bank™)

if F28="" Then End

if Upper${Right$(F2$,4)}<>".ABK" Then
F&"H

Erase 1

if F28<>"" Then Load F28$,1
A$="" : A=0 : Repeat :
A$=AS+Chri{Peek(Start(1)-8+A)) : Inc A
Untl A=8

if A$<>"Sprites “ Then F2$=""
Wend

Hide On

Screen Open 0,320,48,4,Lowres : Curs
Off : Flash Off

Locate 0,0 : Centre “Converting Bobs to
lcons”

Locate 0,1 : Centre “Please wait”
Auto View Off

Erase 2

N=1 : Repeat

A=Sprite Base(N)
XSIZE=Deek{A)*16
YSIZE=Desk(A+2)
HSX=Deek(A+8)

HSY=Deek(A+8)

BP=Deok{A+4)

XS{N)=XSIZE : YS(N)=YSIZE
XHS(N)=HSX : YHS(N)=HSY
BP{N)=BP

Screen Open
1,320,YSIZE+16,2°BP,Lowres
Curs Off : Flash Off

Get Sprite Palette

Screen To Back 1

ink © : Bar 0,0 To XSIZE,YSIZE*16
Paste Bob 0,0,N

Get lcon N,0,0 To XSIZE,YSIZE
ine N : Until N>Length(1) : L=N
Erase 1

Screen 0

Locate 0,2 ; Centre “Now Adding to first
Sprite bank”

Load F§1

N=1 : Repoat

XSIZE=XS(N) : YSIZE=YS(N) :
HSX=XHS(N) : HSY=YHS{N)
BP=BP{(N)

Screen Open
1,320,YSIZE*16,27BP,Lowres
Curs Off : Flash Off

ink 0 : Bar 0,0 To XSIZE,YSIZE*16
Get Sprite Palette

Screen To Back 1

Paste icon 0,0,N

Get Bob Length{1)+1,0,0 To XSIZE,YSIZE
Hot Spot Length(1),HSX,HSY

Ine N : Untll N=L

F2$=F$

Show On

F$=""

While F$=""
F$=Fsel$('*.ABK",F2$,"Save Sprite bank

as:")

If F$="" Then End

if Upper$(Right$(F$,4))<>".ABK" Then
F$=""

Wend

Save F§,1 =

@%

P

illusion of

toconvey the ﬁ\ -dmﬁ -@

movement realistically.

ot - =
If you decide to use these
i SRS APR AR A
4] b & s

more, please drop us a line.

For those of you trying desperately to work out
how to make creatures move in arealistic way,
here are two examples which should be of use.
It is important to match feet between frames in order

continued from page 14

put them in your AMOS program (with BOBS on

the top!!!)

« A better music extension, with synthetic instru-

ments, to save a lot of memory.

« A better REQUEST extension, with what I

think is a fabulous function:
=REQUEST(“questions”, "Cancel”,"Ok")

... this function will open the requester above all
AMOS display, with NO INTERFERENCE AT
ALL with your program! It will be a very easy
way of displaying alert boxes! It will return 0 or
-1 depending on the option chosen.

At the same time, I'm also programming the
compiler as the main project. AMOS compiler
will be very close to STOS one: It will come as
an accessory, and use the same graphic display.
You'll have a “setting” menu to change the
I want to make this compiler as easy to use as the
STOS one: Just put the program in it, watch it
work, and that's it. I also want to allow the
advanced user to set it to its own desire. As
AMOS, it will have two approachs: immediate
simple use, and advanced use.

The compiler will output, as STOS, two different
types of programs:

- Without the system, to be called within AMOS.
-With AMOS system linked to it, as a standalone
program

But] want to add a very special one, designed for
un-expanded AS500: it will produce a program on
the boot block of a disquette. This program will
take total control of the machine, starting
address 256! You will win around 100k
memory for your program! (on the bad side, the
only /O function available will be LOAD and
SAVE, and you won't have many graphic func-
tions...). But I think this option will be invaluable
to professional games writers...

If you have other ideas of new commands, new
extensions, please send them to the club (or
Mandarin). I also would like you to send all your
programs to the club. We have to build a big PD
library so that everybody benefit fromit. Sprites,
musics, procedures, & lots of things can be
20

grabbed from an AMOS program...

If you discover a bug, report it to Mandarin, but

please, be sure to:

« Find a way to make this bug happen another

time

= Describe all your system: A500, A1000, A2000,

A2500,A3000, A8000 (sorry, not last one),

memory expansions, hard drives,workbench

closed or not eic...

= Describe EXACTLY the way to make this bug

happen. Send the faulty program.

All this simple points will help me chasing the

bug, and remove it.

Oh yes, talking about bugs: A lot of you have

reported bugs in sequential file handling, TYPE

MISMATCH errors while inputting. I know my
ial files in V1.1 are not very fast, but they

are not bugged! Whenyoudo aINPUT #1,A$,B,

you MUST be sure there is no comma in the

string you are inputting! If there is, INPUT will

just take the string up to the comma into A$, and

the rest will be affected to B, and will create a

type mismatch error.

In order to input string, you should choose LINE
INPUT instruction that ignores commas.
I can tell you that sequential files in V1.2 are
three times faster.

That's it! Thank you for reading me up to
there. Now you canread good Oxford English by
Aaaaaaron. Happy AMOSsing!

EXTRAS CORRECTION

There is a bug in the sound tracker
converter on version 1 of the Amos
Exrras disc.
Find the line:

OF_MUSIC = $438

and replace with

OF_MUSIC = $43C

This corrects the timing problem
when there are four voices.

Printed by Creative Printers 104 Street Barnstaple North Devon
" Tm

TI655

